Effect of low-level light therapy before radiotherapy in oral squamous cell carcinoma: An in vitro study

Effect radiotherapy carcinoma

Lasers Med Sci. 2022 Aug 24. doi: 10.1007/s10103-022-03632-x. Online ahead of print.

Red Light Therapy Photon Absorption...
Red Light Therapy Photon Absorption Theory and Mechanisms Facts

ABSTRACT

Radiation therapy for head and neck squamous cell carcinoma (HNSCC) is associated with several complications. Although photobiomodulation (PBM) has radioprotective effects in normal tissue, it could also enhance the growth of neoplastic cells. Thus, the present study aimed to investigate the cellular response of oral squamous cell carcinoma with pre-exposure to low-level phototherapy before radiotherapy. SCC9, Cal-27, A431, and HaCaT cell lines were subjected to low-level light therapy and radiotherapy. The cells were treated with a single energy density (300 J/cm2) of a light-emitting diode (660 nm) prior to ionizing radiation at different doses (0, 2, 4, and 6 Gy). After 24 h, wound scratch, proliferation, clonogenic cell survival, cell death, and reactive oxygen species (ROS) analyses were performed to evaluate cell response. The cell lines pre-exposed to PBM at the analyzed dosage were radiosensitive. The treatment significantly reduced cell proliferation and clonogenic cell survival. Migration and cell death assays also revealed positive results, with the treatment group showing lower rate of migration and higher cell death than did the control group. Moreover, PBM effectively increased the intracellular levels of ROS. PBM at 300 J/cm2 is a promising radiosensitizing modality to reduce the radiation dose and avoid the intolerable side effects of radiotherapy for HNSCC, thus increasing the probability of successful treatment. However, further studies are needed to support and confirm the results.

PMID:36001245 | DOI:10.1007/s10103-022-03632-x

This Just In

link to Photobiomodulation promotes repair following spinal cord injury by restoring neuronal mitochondrial bioenergetics via AMPK/PGC-1α/TFAM pathway

Photobiomodulation promotes repair following spinal cord injury by restoring neuronal mitochondrial bioenergetics via AMPK/PGC-1α/TFAM pathway

Background: Insufficient neuronal mitochondrial bioenergetics supply occurs after spinal cord injury (SCI), leading to neuronal apoptosis and impaired motor function. Previous reports have shown that...